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Reaction of Rh(I) and Zn(II) metal centers with a ligand containing
salicylaldiminato and thioether−phosphine moieties resulted in the
formation of a tetranuclear heterobimetallic molecular square. The
directionality required to form these structures is imparted by both
the tetrahedral and square planar metal centers acting in concert
with one another.

The use of coordination chemistry to arrange molecular
building blocks has evolved into one of the most useful and
flexible strategies for the synthesis of supramolecular
structures.1 However, despite the variety of metals and
ligands that have been used to date in the synthesis of
molecular squares, there are few examples of systems in
which the metals have coordination geometries other than
octahedral or square planar.2 Here, we report the first
example of a Rh-Zn heterobimetallic molecular square.

In order to form the square, the novel bifunctional ligand
1 was synthesized in two steps and in 81% overall yield
(Supporting Information). Initially, 1-chloro-2-diphenyl-
phosphinoethane and 4-aminothiophenol are coupled to form
4-(2-diphenylphosphanylethylsulfanyl)phenylamine (DPEP).
DPEP was further reacted with 3,5-di-tert-butyl-1-hydroxy-
benzaldehyde to form the target ligand1. Compound1
contains a hemilabile thioether-phosphine functional group
attached to a salicylaldiminato functional group. These
functional groups provide two very different binding moieties

that are known to complex a variety of main group and
transition metals.3,4

Reactions between 2 equiv of1 and 1 equiv of a
mononuclear Rh(I) source followed by addition of a second
equivalent of a Zn(II) source results in the formation of4 in
86% isolated yield (Scheme 1). Significantly, the order of
metal addition can be reversed with4 being obtained in
comparable yield. These reactions proceeded at room tem-
perature in dry solvents under an inert atmosphere. Com-
pound4 was isolated as a mildly air sensitive, but thermally
stable (no decomposition observed after 5 days at 80°C in
CH2Cl2), yellow microcrystalline solid by recrystallization
from CH2Cl2/pentane with subsequent drying of the crystals
in vacuo.5

Intermediates2 and 3 have been isolated and fully
characterized. Compound2 exhibits a characteristic31P{1H}
NMR resonance atδ 64.6 (JRhP ) 161.6 Hz), diagnostic of
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a cis-phosphine/cis-thioether complex, and compound3
exhibits a resonance atδ -16.6, assigned as free phosphine
(1 has a resonance comparable to that of3 at δ -16.4). The
solution structure and purity of the molecular square4 have
been confirmed by1H and 31P{1H} NMR spectroscopy,
elemental analysis, and ES-MS. The31P{1H}NMR spectrum
of 4 exhibits the diagnostic resonance atδ 65.2 (JRh-P )
162.6 Hz) for acis-phosphine/cis-thioether complex of Rh-
(I), which compares well with the31P{1H} NMR resonance
observed for2. In addition, the solid-state structure of4 has
been determined by a single-crystal X-ray diffraction study
(Figure 1).6

The solid-state structure of4 shows the two square planar
Rh(I) centers and two distorted tetrahedral Zn(II) centers,
bound by four ligands. The square is slightly distorted and
is defined by a Rh-Rh distance of 11.90 Å and a Zn-Zn
distance of 11.48 Å, with Rh-Zn edge distances of 8.53 Å.

Thecis-phosphine/cis-thioether arrangement of the ligands
around the Rh center is crucial in enforcing the directionality
of the ligand. The use of this arrangement in the formation
of large Rh(I) bimetallic macrocycles and homotetranuclear
squares has recently been demonstrated by our group.4,7 This
approach has allowed us to synthesize large and diverse
supramolecular species from a range of flexible ligands.8

However, here the molecule’s shape is facilitated by two
very different types of ligand-metal interactions. The
bifunctional ligand1 is capable of specifically binding Zn-

(II) in the salicylaldiminato portion of the ligand and Rh(I)
in the thioether/phosphine portion. Significantly, the resulting
subunits (2 and 3) are not themselves “square” corners
formed from square planar metal centers. Indeed, before the
second equivalent of metal is added, the orientations of the
ligands are flexible (Scheme 1). Hence, the resulting square
is formed by cooperative interactions throughout the mol-
ecule rather than by any specific directional bonding effect.
As opposed to assembling prefabricated corners and linkers,
we are effectively constraining flexible building blocks into
a rigid structure using complementary coordination geom-
etries. Furthermore, it is likely that this approach can be used
to create flexible macrocycles through the breakage of the
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Scheme 1. The Synthesis of2-4a

a All reactions performed at 25°C. All counterions are BF4-. Reagents,
conditions, and yields: (i)1/2Rh(COE)2BF4, THF/CH2Cl2, 90%; (ii) 1/2Et2Zn,
THF, 95%; (iii) Et2Zn, THF, 95%; (iv) Rh(COE)2BF4, THF/CH2Cl2, 90%.

Figure 1. Thermal ellipsoid drawing of4 showing the labeling scheme
for selected atoms and ellipsoids at 30% probability. Hydrogens are omitted
for clarity. Selected bond angles (deg): P(2)-Rh(1)-P(1), 98.39(7); P(2)-
Rh(1)-S(2), 85.37(6); P(1)-Rh(1)-S(2), 167.30(7); P(2)-Rh(1)-S(1),
171.39(7); S(2)-Rh(1)-S(1), 92.09(6); P(1)-Rh(1)-S(1), 85.85(6); O(2)-
Zn(1)-O(1), 120.7(2); O(2)-Zn(1)-N(2), 95.4(2); O(1)-Zn(1)-N(2),
118.4(2); O(2)-Zn(1)-N(1), 119.2(2); N(2)-Zn(1)-N(1), 109.7(2); O(1)-
Zn(1)-N(1), 94.8(2).
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weak thioether-Rh bonds as in the weak-link approach to
supramolecular complexes.1d,4 Efforts to evaluate this chem-
istry are underway.
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